Stronger together: a new fusion protein boosts cancer immunotherapy

23-Sep-2025

A newly developed molecule brings together two powerful Immunotherapy strategies in one treatment. Researchers at the University of Basel and University Hospital Basel have demonstrated that this fusion protein can both block the “do not attack” signal used by cancer cells and selectively activate tumor-fighting immune cells. This dual action could pave the way for more effective cancer therapies with fewer side effects.

Back in the early 1980s, Linda Taylor, just 33 years old, was diagnosed with advanced skin cancer and faced a grim prognosis. Luckily, she met Dr. Stephen Rosenberg from the National Cancer Institute in Bethesda, Maryland, who treated her with an experimental approach harnessing the body’s own immune system to fight the disease. In 1984, Taylor became the first patient ever to be cured through immunotherapy – a groundbreaking case that forever changed the landscape of cancer treatment.

That pioneering therapy relied on interleukin-2 (IL-2), a signaling molecule that activates many types of immune cells to attack tumors. IL-2 later became the first immunotherapy approved by the U.S. Food and Drug Administration (FDA). However, while effective, IL-2 therapy often causes severe side effects and can also stimulate regulatory T cells, which dampen the immune response instead of boosting it.

Fewer side effects, increased efficiency

To overcome these limitations, scientists have recently generated improved IL-2 variants designed to specifically target tumor-killing immune cells. The new fusion protein – developed by the pharmaceutical company Roche – takes this a step further by combining an IL-2 variant (IL-2v) with an antibody that binds to PD-1, a receptor found in high numbers on immune cells within tumors.

In Science Translational Medicine, a research team led by Professor Alfred Zippelius from the Department of Biomedicine reports promising results with that fusion protein using cancer and immune cells from lung cancer patients. The researchers showed that the molecule selectively activated immune cells isolated from patient tumors that directly target and destroy cancer cells, without triggering the suppressive regulatory T cells. Importantly, it also reawakened “exhausted” immune cells that had been rendered inactive by chronic stimulation in the tumor environment.

Blockage removal and activation

The fusion of the two components, PD-1 antibodies and IL-2v, has two advantages: The antibody guides IL-2v directly to the tumor site, where it activates the immune cells most capable of destroying cancer cells. At the same time, the antibody blocks the PD-1 pathway, which tumors use to suppress immune attack, effectively releasing the immune system’s brakes and allowing it to respond more aggressively.

“The tumor normally restricts the immune system, but the fusion molecule overcomes this inhibition and additionally activates the immune cells,” summarizes Dr. Clara Serger, one of the two co-first authors of the study.

The team’s findings provide crucial insights into how this innovative therapy works and may help guide further refinements. The fusion protein is currently being evaluated in an ongoing phase I clinical trial led by Roche.

Original publication

Other news from the department science

Most read news

More news from our other portals

See the theme worlds for related content

Topic world Antibodies

Antibodies are specialized molecules of our immune system that can specifically recognize and neutralize pathogens or foreign substances. Antibody research in biotech and pharma has recognized this natural defense potential and is working intensively to make it therapeutically useful. From monoclonal antibodies used against cancer or autoimmune diseases to antibody-drug conjugates that specifically transport drugs to disease cells - the possibilities are enormous

View topic world
Topic world Antibodies

Topic world Antibodies

Antibodies are specialized molecules of our immune system that can specifically recognize and neutralize pathogens or foreign substances. Antibody research in biotech and pharma has recognized this natural defense potential and is working intensively to make it therapeutically useful. From monoclonal antibodies used against cancer or autoimmune diseases to antibody-drug conjugates that specifically transport drugs to disease cells - the possibilities are enormous

Last viewed contents

AI models for drug design fail in physics

AI models for drug design fail in physics

Targeted protein degradation: Researchers find new way to combat harmful proteins in tumour cells - Domino effect in the fight against cancer

Targeted protein degradation: Researchers find new way to combat harmful proteins in tumour cells - Domino effect in the fight against cancer

Chemistry meets biology: controlling artificial cell membranes through catalysis - Researchers develop an artificial metalloenzyme-based platform that enables programmable control of artificial membrane behavior

Chemistry meets biology: controlling artificial cell membranes through catalysis - Researchers develop an artificial metalloenzyme-based platform that enables programmable control of artificial membrane behavior

QIAGEN to acquire Parse Biosciences - Entering the age of single-cell AI

QIAGEN to acquire Parse Biosciences - Entering the age of single-cell AI

Setting the Course for AI-Assisted Radiology - Fraunhofer MEVIS and Radboud University Medical Center have founded the spin-off Plain Medical

Setting the Course for AI-Assisted Radiology - Fraunhofer MEVIS and Radboud University Medical Center have founded the spin-off Plain Medical

Ancient viral DNA shapes modern human placentas - “It’s a reminder that there is much more to learn about our genome and how ancient infections can influence who we are today”

Ancient viral DNA shapes modern human placentas - “It’s a reminder that there is much more to learn about our genome and how ancient infections can influence who we are today”

Analytica 2026: AI as a driver of digital transformation - Laboratory of the future in action

Analytica 2026: AI as a driver of digital transformation - Laboratory of the future in action

How the principle of cheese noodles helps against Alzheimer's

How the principle of cheese noodles helps against Alzheimer's

New deep-learning tool can tell if your salmon is wild or farmed

New deep-learning tool can tell if your salmon is wild or farmed

Bayer confirms 2025 Group outlook, progresses on strategic priorities - "Our organization continues to get leaner and more efficient, and we’re seeing benefits in terms of speed and focus"

Bayer confirms 2025 Group outlook, progresses on strategic priorities - "Our organization continues to get leaner and more efficient, and we’re seeing benefits in terms of speed and focus"

Q3 2025: Merck Shows Solid Organic Growth Across All Sectors - Strong performance by Process Solutions, Rare Diseases and Semiconductor Solutions

Q3 2025: Merck Shows Solid Organic Growth Across All Sectors - Strong performance by Process Solutions, Rare Diseases and Semiconductor Solutions

REVY Environmental Solutions: From ISC3 Start-up of the Month to Pioneer in Resource Recovery from Waste - Sustainable Chemistry Changemakers: Paving the Way Toward a More Sustainable Future

REVY Environmental Solutions: From ISC3 Start-up of the Month to Pioneer in Resource Recovery from Waste - Sustainable Chemistry Changemakers: Paving the Way Toward a More Sustainable Future